Home / গণিতের ইতিহাস / আর্কিমিডিসঃ গণিতের এক অসাধারণ কারিগর

আর্কিমিডিসঃ গণিতের এক অসাধারণ কারিগর

আর্কিমিডিস

আর্কিমিডিস (গ্রিক: Άρχιμήδης)

চিন্তিত আর্কিমিডিস; চিত্রকর Domenico Fetti (১৬২০)
পূর্ণ নাম আর্কিমিডিস (গ্রিক: Άρχιμήδης)
জন্ম c. ২৮৭ বিসি
Syracuse, Sicily
Magna Graecia
মৃত্যু c. ২১২ বিসি
সিরাকস
যুগ সুপ্রাচীন দর্শন
অঞ্চল শ্রেষ্ঠ গ্রিক দর্শনিক
চিন্তাধারা আলেকজান্দ্রিয়ার উইক্লিড
সাধারণ দর্শণ
মূল কর্মক্ষেত্র গনিত, পদার্থবিদ্যা, প্রকৌশল, জ্যোতির্বিজ্ঞান, আবিষ্কার
গুরুত্বপূর্ণ ধারণা Fluid statics, লিভার,
infinitesimals

আর্কিমিডিস (প্রাচীন গ্রিক ভাষায়: Ἀρχιμήδης আর্খিম্যাদ্যাস্‌, বর্তমান গ্রিক ভাষায় Αρχιμήδης আর্খ়িমিদ়িস্‌) বা সিরাকাসের আর্কিমিডিস (খ্রি.পূ. ২৮৭-২১২) একজন গ্রিক গণিতবিদ, পদার্থবিজ্ঞানী, প্রকৌশলী, জ্যোতির্বিদ ও দার্শনিক। যদিও তাঁর জীবন সম্পর্কে খুব কমই জানা গেছে, তবুও তাঁকে ক্ল্যাসিক্যাল যুগের অন্যতম সেরা বিজ্ঞানী হিসেবে বিবেচনা করা হয়। পদার্থবিদ্যায় তাঁর উল্লেখযোগ্য অবদানের মধ্যে রয়েছে স্থিতিবিদ্যা আর প্রবাহী স্থিতিবিদ্যার ভিত্তি স্থাপন এবং লিভারের কার্যনীতির বিস্তারিত ব্যাখ্যাপ্রদান। পানি তোলার জন্য আর্কিমিডিসের স্ক্রু পাম্প, যুদ্ধকালীন আক্রমণের জন্য সীজ (ইংরেজি: siege সীঝ়্‌) ইঞ্জিন ইত্যাদি মৌলিক যন্ত্রপাতির ডিজাইনের জন্যও তিনি বিখ্যাত। আধুনিক বৈজ্ঞানিক পরীক্ষায় তাঁর নকশাকৃত আক্রমণকারী জাহাজকে পানি থেকে তুলে ফেলার যন্ত্র বা পাশাপাশি রাখা একগুচ্ছ আয়নার সাহায্যে জাহাজে অগ্নিসংযোগের পদ্ধতি সফলভাবে বাস্তবায়ন করা সম্ভব হয়েছে।

আর্কিমিডিসকে সাধারণত প্রাচীন যুগের সেরা এবং সর্বাকালের অন্যতম সেরা গণিতজ্ঞ হিসেবে বিবেচনা করা হয়। তিনি মেথড অফ এক্সহশন ব্যবহার করে অসীম ধারার সমষ্টিরূপে প্যারাবোলার বক্ররেখার অন্তগর্ত ক্ষেত্রের ক্ষেত্রফল নির্ণয় করেন এবং পাই -এর প্রায় নিখুঁত একটি মান নির্নয় করেন।এছাড়াও তিনি আর্কিমিডিসের স্পাইরালের সংজ্ঞা দেন, বক্রতলের ক্ষেত্রফল নির্ণয়ের সূত্র প্রদান করেন এবং অনেক বড় সংখ্যাকে সহজে প্রকাশ করার একটি চমৎকার পদ্ধতি আবিষ্কার করেন।

যদিও রোমানরা আর্কিমিডিসের কোন ক্ষতি করার উপর নিষেধাজ্ঞা ছিল, কিন্তু রোমানদের সিরাকিউজ অবরোধের সময় এক রোমান সৈন্যের হাতেই আর্কিমিডিস নিহত হন। রোমান দার্শনিক সিসেরো আর্কিমিডিসের সমাধীর উপরে একটি সিলিন্ডারের ভেতরে আবদ্ধ একটি গোলকের উল্লেখ করেছেন। আর্কিমিডিস প্রমাণ করেছিলেন যে সিলিন্ডারের ভেতর আবদ্ধ গোলকটির আয়তন এবং ভূমির ক্ষেত্রফল উভয়ই সিলিন্ডারের দুই তৃতীয়াংশ, যা আর্কিমিডিসের সেরা গাণিতিক অর্জনগুলোর একটি হিসেবে বিবেচিত।

প্রাচীনকালে আর্কিমিডিসের গাণিতিক রচনাগুলি তাঁর উদ্ভাবনগুলোর মত পরিচিত ছিল না। আলেকজান্দ্রিয়ার গণিতবিদরা তাঁর লেখা পড়েছেন, বিভিন্ন জায়গায় উল্লেখও করেছেন, কিন্তু আনুমানিক ৫৩০ খৃষ্টাব্দে গ্রিক স্থপতি ইসেডোর অফ মিলেতাস সর্বপ্রথম তাঁর সকল রচনা একত্রে লিপিবদ্ধ করেন। পরবর্তীতে ষষ্ঠ শতাব্দীতে গ্রিক গণিতবিদ ইউতোশিয়াস আর্কিমিডিসের কাজের উপর একটি বিবরণ প্রকাশ করেন, যা তাঁকে প্রথমবারের মত বৃহত্তর পাঠকসমাজের কাছে পরিচিত করে তোলে। আর্কিমিডিসের কাজের খুব কম লিখিত দলিল মধ্যযুগের পর অবশিষ্ট ছিল। কিন্তু সেই অল্পকিছু দলিলই পরবর্তীতে রেনেসাঁ যুগের বিজ্ঞানীদের কাছে খুবই উপকারী বলে বিবেচিত হয়। ১৯০৬ সালে আর্কিমিডিসের একটি নতুন পান্ডুলিপি আবিষ্কৃত হয় যা তাঁর গাণিতিক সমস্যা সমাধানের পদ্ধতির উপর নতুনভাবে আলোকপাত করে।

জীবনী

 

ব্রোঞ্জনির্মিত আর্কিমিডিসের এই মূর্তিটি বার্লিনের আর্কেনহোল্ড অবজারভেটরিতে অবস্থিত। এর ভাস্কর গেরহার্ড থীয়েম এবং এটি ১৯৭২ সালে উন্মোচন করা হয়।

আর্কিমিডিস আনুমানিক ২৮৭ খৃস্টপূর্বাব্দে তৎকালীন বৃহত্তর গ্রিসের উপনিবেশ সিসিলি দ্বীপের সিরাকিউজ নামের বন্দর নগরীতে জন্মগ্রহণ করেন। বাইজান্টাইন গ্রিক ঐতিহাসিক জন যেতজেসের বিবরণ অনুযায়ী আর্কিমিডিস পঁচাত্তর বছর বয়সে মারা যান, সেখান থেকে তাঁর জন্মসাল সম্পর্কে ধারণা করা হয়। দ্য স্যান্ড রেকোনার নামক দলিলে আর্কিমিডিস তাঁর বাবার নাম ফিডিয়াস বলে উল্লেখ করেন। ফিডিয়াস একজন জ্যোতির্বিদ ছিলেন, যাঁর সম্পর্কে আর কিছু জানা সম্ভব হয়নি। ঐতিহাসিক প্লুটার্খ তাঁর দ্য প্যারালাল লাইভস নামক জীবনী গ্রন্থে আর্কিমিডিসকে সিরাকিউজের রাজা দ্বিতীয় হিয়েরোর আত্মীয় বলে উল্লেখ করেন। আর্কিমিডিসের বন্ধু হেরাক্লিডিস তাঁর একটি জীবনী লিখেছিলেন, কিন্তু সেটি পরবর্তীতে হারিয়ে যায়। আর্কিমিডিসের জীবনের অনেক খুঁটিনাটি তথ্য তাই আর জানা যায়নি। যেমন তিনি বিয়ে করেছিলেন কিনা, তাঁর কোন সন্তান ছিল কিনা এগুলো এখনো অজানা। যৌবনে আর্কিমিডিস সম্ভবত মিসরের আলেকজান্দ্রিয়ায় পড়াশুনা করেছিলেন, যেখানে কোনোন অভ সামোস এবং এরাতোস্থেনেস অফ সিরেন তাঁর সহপাঠী ছিলেন। তিনি কোনোন অভ সামোসকে তাঁর বন্ধু হিসেবে উল্লেখ করেছিলেন; অপরদিকে তাঁর দুটি কাজের ( দ্য মেথোড অভ মেকানিক্যাল থিওরেমস এবং দ্য ক্যাটল প্রবলেম) শুরুতে এরাতোস্থেনেসের উদ্দেশ্যে কিছু নির্দেশনা ছিল।

২১২ খৃস্টপূর্বাব্দে দ্বিতীয় পিউনিক যুদ্ধের সময় আর্কিমিডিস নিহত হন, যখন রোমান সেনাপতি জেনারেল মার্কাস ক্লডিয়াস মার্সেলাস দুই বছর ধরে অবরোধের পর সিরাকিউজ শহর দখল করেন। প্লুটার্খের বিবরণ অনুযায়ী, সিরাকিউজের পতনের সময় আর্কিমিডিস একটি গাণিতিক চিত্র নিয়ে ব্যস্ত ছিলেন। এক রোমান সৈন্য তাঁকে কাজ বন্ধ করে জেনারেল মার্সেলাসের সাথে দেখা করতে যাওয়ার নির্দেশ দেয়। আর্কিমিডিস তাঁর কাজ শেষ না করে যেতে অস্বীকৃতি জানালে ক্ষিপ্ত সৈনিক তার তলোয়ার দিয়ে তাঁকে তাৎক্ষণিকভাবে হত্যা করে। অন্য একটি স্বল্প প্রচলিত ধারণা হচ্ছে, আর্কিমিডিস এক রোমান সৈন্যের কাছে আত্মসমর্পণের সময় নিহত হন। এই মতবাদ অনুসারে, তিনি কিছু গাণিতিক সরঞ্জাম বহন করছিলেন যেগুলোকে সৈন্যটি মূল্যবান সম্পদ ভেবে বিভ্রান্ত হয় এবং লোভে পড়ে তাঁকে হত্যা করে। বলা হয়ে থাকে যে, জেনারেল মার্সেলাস আর্কিমিডিসের বৈজ্ঞানিক প্রতিভা সম্পর্কে অবগত ছিলেন এবং তিনি তাঁর কোন ক্ষতি না করার জন্য নির্দেশ দিয়েছিলেন। আর্কিমিডিসের মৃত্যুসংবাদ তাই তাঁকে ক্ষুব্ধ করে।

 

কোন গোলকের আয়তন এবং পৃষ্ঠতলের ক্ষেত্রফল তার অন্তঃস্থ সিলিন্ডারের আয়তন ও পৃষ্ঠতলের ২/৩ অংশের সমান। আর্কিমিডিসের সমাধিতে তাঁর নিজের অনুরোধে একটি গোলক ও একটি সিলিন্ডার বসানো হয়।

আর্কিমিডিসের সমাধিফলকে একটি ভাস্কর্য রয়েছে যা সমান উচ্চতা ও ব্যাসের একটি গোলক ও একটি সিলিন্ডার নিয়ে গঠিত, যা তাঁর সবচেয়ে বিখ্যাত আবিষ্কারগুলোর একটিকে নির্দেশ করে। তিনি প্রমাণ করেছিলেন যে সমান উচ্চতা ও ব্যাসবিশিষ্ট একটি গোলক ও একটি সিলিন্ডারের ক্ষেত্রে গোলকটির আয়তন ও পৃষ্ঠতলের ক্ষেত্রফল সিলিন্ডারের আয়তন ও পৃষ্ঠতলের ক্ষেত্রফলের দুই তৃতীয়াংশ। আর্কিমিডিসের মৃত্যুর ১৩৭ বছর পর ৭৫ খৃষ্টাব্দে রোমান বক্তা সিসেরো সিরাকিউজের এগ্রিজেনটিন গেইটের কাছে ঝোপঝাড় পরিবেষ্টিত অবস্থায় আর্কিমিডিসের কবর আবিষ্কার করেন।

আবিষ্কার ও উদ্ভাবনসমূহ

সোনার মুকুট

 

আর্কিমিডিস তার অনিয়মিত আকারের বস্তুর আয়তন পরিমাপের পদ্ধতির মাধ্যমে প্রমাণ করেন যে মুকুটের সোনার ঘনত্ব খাটি সোনার ঘনত্বের চেয়ে কম।

আর্কিমিডিসের সবচেয়ে জনপ্রিয় আবিষ্কারগুলোর মধ্যে একটি ছিল অনিয়মিত আকারের বস্তুর আয়তন পরিমাপের পদ্ধতি। ভিট্রুভিয়াসের বিবরণ অনুযায়ী, রাজা দ্বিতীয় হিয়েরোর জন্য লরেল পাতার মুকুটের মত দেখতে একটি সোনার মুকুট প্রস্তুত করা হয়েছিল। আর্কিমিডিসকে দায়িত্ব দেয়া হয়েছিল মুকুটটি খাঁটি সোনার কিনা সেটা নিশ্চিত করার। সহজ পদ্ধতি ছিল মুকুটটি গলিয়ে তার ঘনত্ব নির্ণয় করা, কিন্তু রাজা মুকুটটি নষ্ট করতে রাজি ছিলেন না। আর্কিমিডিস যখন এ সমস্যা নিয়ে ভাবছিলেন, তখন হঠাৎ গোসল করতে গিয়ে তিনি লক্ষ্য করেন যে তিনি পানিতে নামা মাত্রে বাথটাবের পানির উচ্চতা বৃদ্ধি পাচ্ছে। তিনি বুঝতে পারেন যে পানির এই ধর্মকে ঘনত্ব পরিমাপে ব্যবহার করা সম্ভব। যেহেতু ব্যবহারিক কাজের জন্য পানি অসংকোচনশীল, তাই পানিতে নিমজ্জিত মুকুট তার আয়তনের সমান পরিমাণ পানি স্থানচ্যুত করবে। এই অপসারিত পানির আয়তন দ্বারা মুকুটের ভরকে ভাগ করে মুকুটের ঘনত্ব পরিমাপ করা সম্ভব। যদি মুকুটের উপাদানে সোনার সাথে অন্য কোন কম ঘনত্বের সস্তা ধাতু যোগ করা হয় তাহলে তার ঘনত্ব খাঁটি সোনার ঘনত্বের চেয়ে কম হবে। বলা হয়ে থাকে যে এই আবিষ্কার আর্কিমিডিসকে এতই উত্তেজিত করেছিল যে তিনি নগ্ন অবস্থায় শহরের রাস্তায় “ইউরেকা” (গ্রিক: “εὕρηκα!” ; অর্থ “আমি পেয়েছি!”) বলে চিৎকার করতে করতে দৌড়াতে শুরু করেছিলেন।

বাস্তবে আর্কিমিডিসের আবিষ্কৃত এই পদ্ধতিটি প্রশ্নের সম্মুখীন হয়েছিল, কারণ ঘনত্বের পার্থক্যের কারণে যে পরিমাণ পানি অপসারিত হবে সেটি সঠিকভাবে নির্নয় করা একটি কষ্টসাধ্য কাজ। এই সমস্যার সমাধান করা হয় হয় fluid statics এর মাধ্যমে যেটি আর্কিমিডিস তত্ত্ব নামে পরিচিত। তত্ত্বটি তার On Floating Bodies প্রবন্ধে বর্ণনা করা হয়েছে। তত্ত্বে বলা হয়েছে যে , কোন বস্তুর ওজন এটি দ্বারা অপসারিত পানির ওজনের সমান।

আর্কিমিডিসের স্ক্রু

 

আর্কিমিডিসের স্ক্রু পানি উত্তলনের কাজ ব্যবহৃত একট কার্যকর যন্ত্র।

আর্কিমিডিসের প্রকৌশল কাজের অধিকাংশই ছিল তাঁর নিজ শহর সিরাকিউজের প্রয়োজন মেটানোর জন্য। গ্রিক লেখক অথেনিয়াস অভ নক্রেটিসের বর্ণনা অনুযায়ী, রাজা দ্বিতীয় হিয়েরো আর্কিমিডিসকে একটি বিশাল জাহাজ তৈরি করার দায়িত্ব দিয়েছিলেন। সিরাকিউসা নামের এই জাহাজটিকে প্রয়োজনানুযায়ী প্রমোদতরী, রসদ-সরবরাহকারী এবং রণতরী হিসেবে ব্যবহার করে যেত। বলা হয়ে থাকে যে ক্লাসিকাল যুগে নির্মাণ করা সকল জাহাজের মধ্যে সিরাকিউসা ই ছিল সর্ববৃহৎ। অথেনিয়াসের ধারণামতে, এই জাহাজে একসাথে ছয়শো যাত্রী বহন করা যেত এবং জাহাজটিতে সাজানো বাগান, একটি ব্যায়ামাগার এবং দেবী আফ্রোদিতির মন্দির ছিল। স্বাভাবিকভাবেই এত বৃহদাকৃতির একটি জাহাজে প্রচুর পানি চুঁইয়ে ঢুকতো। সেই পানি নির্গমণের জন্য আর্কিমিডিস তাঁর বিখ্যাত আর্কিমিডিসের স্ক্রু তৈরি করেন। এটি ছিল প্রকৃতপক্ষে একটি সিলিন্ডারের ভেতরে আবদ্ধ একটি স্ক্রু আকৃতির ঘূর্ণায়মান ধাতব ব্লেড যাকে হাত দিয়ে ঘুরানো হত। এই যন্ত্রটি খাল থেকে উঁচু জমিতে সেচের জন্যও ব্যবহার করা হত। বর্তমানকালেও পানি এবং কয়লা, শস্যদানা জাতীয় ক্ষুদ্রাকৃতির পদার্থ উত্তোলনের জন্য আর্কিমিডিসের স্ক্রু ব্যবহার করা হয়। ভিট্রুভিয়াসের বিবরণ অনুযায়ী, আর্কিমিডিসের স্ক্রু সম্ভবত প্রাচীন ব্যবিলনের শূণ্যোদ্যানে জলসেচনের জন্য ব্যবহৃত স্ক্রু পাম্পের একটি উন্নততর রূপ ছিল।

আর্কিমিডিসের থাবা

“দ্য ক্ল অভ আর্কিমিডিস” বা “আর্কিমিডিসের থাবা” একটি অস্ত্র যা আর্কিমিডিস তাঁর শহর সিরাকিউজকে বহিঃস্থ আক্রমণ থেকে রক্ষার জন্য উদ্ভাবন করেছিলেন বলে বলা হয়ে থাকে। এ যন্ত্রটিতে একটি ক্রেনের ন্যায় বাহু এবং তাতে ঝুলানো একটি বিশাল ধাতব আংটা ছিল। এই আংটার সাহায্যে আক্রমণকারী জাহাজকে উল্টে ফেলা হত। আধুনিককালে এই যন্ত্রের কার্যকারিতা নিয়ে বেশ কিছু পরীক্ষা করা হয়েছে। ২০০৫ সালে “সুপারউইপনস অভ দ্য এনসিয়েন্ট ওয়ার্ল্ড” নামের একটি টেলিভিশন ডকুমেণ্টারীতে এমন একটি যন্ত্র প্রস্তুত করা হয় এবং সিদ্ধান্ত দেয়া হয় যে এটি প্রস্তুত এবং সার্থকভাবে ব্যবহার করা সম্ভব।

আর্কিমিডিসের উত্তপ্ত রশ্মিঃ সত্য নাকি জনশ্রুতি?

 

আর্কিমিডিস হয়তো অনেকগুলো আয়না একত্র করে আবতল প্রতিফলক হিসেবে কাজ করিয়ে সিরাকিউজ আক্রমণকারী জাহাজ ভস্মীভূত করেছিলেন।

দ্বিতীয় শতকের লেখক লুসিয়ানের বর্ণনা অনুযায়ী, সিরাকিউজ যখন আক্রান্ত হয়, আর্কিমিডিস শত্রুপক্ষের জাহাজ আগুনে ভস্মীভূত করেন। ট্রেলসের এনথেমিয়াসের বিবরণ অনুযায়ী, আর্কিমিডিস অনেকগুলি আয়নার সাহায্যে আক্রমণকারী জাহাজের উপর সূর্যরশ্মি কেন্দ্রীভূত করে সেগুলোতে অগ্নিসংযোগ করেন।

রেনেসাঁ যুগ থেকেই অবশ্য এই জনশ্রুতির সত্যতা নিয়ে বিতর্ক চলে আসছে। রেনে দেকার্ত একে অসত্য বলে প্রত্যাখ্যান করেছেন, যদিও বর্তমানকালের বিজ্ঞানীরা শুধুমাত্র আর্কিমিডিসের যুগে সহজলভ্য যন্ত্রপাতির সাহায্যে এই প্রক্রিয়ার সম্ভাব্যতা যাচাই করার চেষ্টা করে যাচ্ছেন। অনেকের ধারণা, সারিবদ্ধভাবে সাজানো অনেকগুলো চকচকে পলিশ করা ব্রোঞ্জ বা তামার পাতের সাহায্যে জাহাজের উপর সূর্যরশ্মি কেন্দ্রীভূত করা সম্ভব। এতে প্রকৃতপক্ষে সৌরচুল্লীতে ব্যবহৃত পরাবৃত্তিক প্রতিফলনের নীতি ব্যবহার করা হবে।

১৯৭৩ সালে গ্রিক বিজ্ঞানী ইওয়ান্নিস সাক্কাস আর্কিমিডিসের সূর্যরশ্মি নিয়ে একটি পরীক্ষা চালান। এ পরীক্ষায় তিনি সত্তুরটি আয়না ব্যবহার করেন। প্রতিটি আয়নার আকার ছিল পাঁচ ফুট বনাম তিন ফুট এবং এগুলো তামা দ্বারা পালিশ করা ছিল। আয়নাগুলো একশো ষাট ফুট দূরবর্তী একটি প্লাইউড নির্মিত জাহাজের দিকে তাক করা ছিল। আয়নাগুলো ঠিকমত ফোকাস করার মাত্র কয়েক সেকেন্ডের মধ্যে জাহাজটিতে আগুন ধরে যায়। অবশ্য জাহাজটিতে আলকাতরার প্রলেপ ছিল, যা সম্ভবত অগ্নিসংযোগের সহায়ক হিসেবে কাজ করেছে।

২০০৫ এর অক্টোবরে ম্যাসাচুসেটস ইন্সটিটিউট অভ টেকনোলজির একদল ছাত্র ১২৭টি এক ফুট দৈর্ঘ্য-প্রস্থ বিশিষ্ট আয়না প্রায় ১০০ ফুট দূরবর্তী একটি কাঠের ডামি জাহাজের উপর ফোকাস করে একটি পরীক্ষা চালায়। প্রায় দশ মিনিট ঊজ্জ্বল সূর্যালোকে এক জায়গায় থাকার পর জাহাজটিতে আগুন জ্বলে ওঠে। এ পরীক্ষা থেকে সিদ্ধান্তে আসা হয় যে এ প্রক্রিয়ায় অগ্নিসংযোগ সম্ভব তবে তা শুধুমাত্র কিছু নির্দিষ্ট পরিস্থিতিতে। মিথবাস্টার্স টেলিভিশন শোতে এমআইটির এই শিক্ষার্থীরা পুনরায় একই পরীক্ষা চালায়, এবার সানফ্রান্সিসকো ঊপকূলে একটি কাঠের মাছধরা নৌকার উপর। এবারও বেশ কিছু সময় পর ছোট আকারে নৌকাটিতে আগুন জ্বলে ওঠে। প্রকৃতপক্ষে আগুন জ্বলে ওঠার জন্য কাঠকে তার দহন তাপমাত্রায় পৌছতে হয় যা প্রায় তিনশো ডিগ্রি সেলসিয়াসের সমান।

২০০৬ এর জানুয়ারিতে অনুষ্ঠানটি সম্প্রচারের সময় মীথবাস্টার্স সিদ্ধান্ত দেয় যে এটি প্রকৃতপক্ষে জনশ্রুতি, সত্য নয়। এর স্বপক্ষে যুক্তি হিসেবে অগ্নিসংযোগের জন্য দীর্ঘ সময় এবং ঊজ্জ্বল সূর্যালোকের প্রয়োজনীয়তার দিকে নির্দেশ করা হয়। এছাড়াও বলা হয় যে সিরাকিউজ পূর্বদিক থেকে আক্রান্ত হয়েছিল, সেক্ষেত্রে শুধুমাত্র সকাল বেলার আক্রমণই এ পদ্ধতিতে মোকাবেলা করা সম্ভব। মীথবাস্টার্সে এ কথাও মনে করিয়ে দেয়া হয় যে সেসময় প্রচলিত অন্যান্য অস্ত্র, যেমন অগ্নিসংযোগ করা তীর অথবা ক্যাটাপোল্টের বোল্ট ব্যবহার করে আরো সহজে কোন জাহাজে দূর থেকে অগ্নিসংযোগ করা সম্ভব ছিল।

অন্যান্য আবিষ্কার ও উদ্ভাবন

যদিও আর্কিমিডিস নিজে লিভার উদ্ভাবন করেননি, তিনিই প্রথম লিভারের কার্যনীতি নিয়ে বিস্তারিত আলোচনা করেন। পাপ্পাস অভ আলেকজান্দ্রিয়ার কথা অনুযায়ী, লিভারের মূলনীতি বোঝাতে গিয়ে আর্কিমিডিস বলেছিলেন, “আমাকে একটা দাঁড়ানোর জায়গা দাও, আমি পৃথিবীকে তুলে সরিয়ে দেব”।প্লুটার্খ ব্যাখ্যা করেছেন আর্কিমিডিস কিভাবে ব্লক-এন্ড-ট্যাকল পুলি ডিজাইন করেন, যা নাবিকদের লিভারের মুলনীতি ব্যবহার করে অনেক ভারী বস্তু সরাতে সাহায্য করে। এছাড়াও আর্কিমিডিস ক্যাটাপোল্টের ক্ষমতা এবং দক্ষতা বৃদ্ধি করেন এবং প্রথম পিউনিক যুদ্ধের সময় ওডোমিটার আবিষ্কার করেন। প্রচলিত বিবরণ অনুযায়ী, ওডোমিটার ছিল একটি গীয়ারযুক্ত ঠেলাগাড়ি যা প্রতি মাইল চলার পর একটি পাত্রে ছোট একটি গোলক ফেলে দিত।

সিসেরো (খৃষ্টপূর্ব ১০৬ – ৪৩) তাঁর De re publica নামক কাল্পনিক কথোপকথনে আর্কিমিডিসের উল্লেখ করেন। সিরাকিউজ দখলের পর রোমান সেনাপতি মার্কাস ক্লদিয়াস মার্সেলাস রোমে দুটি যন্ত্র নিয়ে যান। এই যন্ত্রগুলির সাহায্যে সূর্য, চাঁদ এবং পাঁচটি গ্রহের স্থান পরিবর্তন দেখানো যেত, যা জ্যোতির্বিদ্যায় ব্যবহৃত হত।}} একসময় ধারণা করা হত যে এমন যন্ত্র তৈরি করার জন্য যে পরিমাণ যন্ত্রকৌশলগত জ্ঞান থাকা লাগে তা এত প্রাচীনকালে ছিল না, কিন্তু ১৯০২ সালে এন্টিকাইথেরা মেকানিজমের খোঁজ পাওয়ার পর বোঝা যায় যে প্রাচীন গ্রিকদের এসব বিষয়ে যথেষ্ট জ্ঞান ছিল।

গণিত

যদিও আর্কিমিডিসকে বিভিন্ন যন্ত্র আবিষ্কারের জন্য সবচেয়ে বেশি মনে রাখা হয়, কিন্তু তিনি গণিতেও অনেক অবদান রাখেন। প্লুটার্খ লিখেছেন, “তাঁর সমুদয় ভালোবাসা এবং উচ্চাকাঙ্খা ছিল সেসব তাত্ত্বিক বিষয়ের প্রতি যেখানে তাঁকে বাস্তব জীবনের প্রয়োজন নিয়ে মাথা ঘামাতে হতো না।”

 

আর্কিমিডিস মেথড অভ এক্সহশন ব্যবহার করে পাইয়ের আসন্ন মান নির্ণয় করেন

আর্কিমিডিস বর্তমানে ইন্টিগ্র্যাল ক্যালকুলাসে ব্যবহৃত অতিক্ষুদ্র সংখ্যার ধারণা ব্যবহার করতে সক্ষম ছিলেন। প্রুফ অভ কন্ট্রাডিকশন ব্যবহার করে তিনি নিখুঁতভাবে বিভিন্ন গাণিতিক সমস্যার সমাধান করতে পারতেন, সেই সাথে সেসব সমাধানের লিমিটও উল্লেখ করতেন। এই পদ্ধতিকে বলা হয় মেথড অভ এক্সহশন, যার সাহায্যে তিনি পাইয়ের মান যথেষ্ট নিখুঁতভাবে নির্ণয় করেন। তিনি এই কাজের জন্য বৃত্তের বাইরে একটি বড় বহুভুজ এবং ভেতরে একটি ছোট বহুভুজ আঁকেন। বহভুজের বাহুর সংখ্যা যত বৃদ্ধি পায়, তা আকৃতিতে বৃত্তের তত কাছাকাছি আসতে থাকে। যখন প্রতিটি বহুভুজের ৯৬টি করে বাহু, তিনি বহুগুলির দৈর্ঘ্য নির্ণয় করেন এবং দেখান যে পাইয়ের মান ৩১/৭ (প্রায় ৩.১৪২৯) এবং ৩১০/৭১ (প্রায় ৩.১৪০৮) এর মাঝে, যা প্রকৃত মান ৩.১৪১৬ এর খুবই কাছাকাছি। তিনি আরও প্রমাণ করেন যে বৃত্তের ক্ষেত্রফল তার ব্যাসার্ধের বর্গের পাই গুণিতকের সমান। অন দ্য স্ফীয়ার এন্ড সিলিন্ডার বইতে তিনি মতবাদ প্রদান করেন যে, যে কোন মানকে তার নিজের সাথে যথেষ্ট সংখ্যক বার যোগ করলে তা যে কোন নির্দিষ্ট মানকে অতিক্রম করবে। এই মতবাদ বাস্তব সংখ্যার আর্কিমিডিয়ান বৈশিষ্ট্য নামে পরিচিত।

মেজারমেন্ট অভ সার্কেল বইতে আর্কিমিডিস ৩ এর বর্গমূল ২৬৫/১৫৩ (প্রায় ১.৭৩২০২৬১) এবং ১৩৫১/৭৮০ (প্রায় ১.৭৩২০৫১২) এর মাঝে বলে উল্লেখ করেন, যা প্রকৃত মান ১.৭৩২০৫৮ এর খুবই কাছাকাছি। তিনি অবশ্য কোন পদ্ধতিতে এই মান নির্ণয় করেছিলেন সে প্রসঙ্গে কোন কিছুই উল্লেখ করেননি।

 

আর্কিমিডিস প্রমাণ করেছেন যে উপরের চিত্রের পরাবৃত্তিক ক্ষেত্রটির ক্ষেত্রফল নিচের চিত্রের অন্তঃস্থ ত্রিভুজটির ক্ষেত্রফলের ৪/৩ গুণিতকের সমান।

কোয়াড্রেচার অভ প্যারাবোলা বইতে আর্কিমিডিস প্রমাণ করেন যে একটি পরাবৃত্ত এবং একটি সরলরেখা দ্বারা আবদ্ধ ক্ষেত্রে ক্ষেত্রফল একই ক্ষেত্রের অন্তঃস্থ ত্রিভুজের ক্ষেত্রফলের ৪/৩ গুণিতকের সমান, যা পাশের চিত্রে দেখানো হয়েছে। তিনি এ সমস্যার সমাধানটিকে একটি অসীম ধারা হিসেবে প্রকাশ করেন যার সাধারণ অনুপাত ১/৪।

sum_{n=0}^infty 4^{-n} = 1 + 4^{-1} + 4^{-2} + 4^{-3} + cdots = {4over 3}. ;

দ্য স্যান্ড রেকোনার বইতে আর্কিমিডিস এই মহাবিশ্ব মোটা কতগুলো ধূলিকণা ধারণ করতে সক্ষম তা গণনা করার চেষ্টা করেন। এর মাধ্যমে তিনি ধূলিকণার সংখ্যা গণনা করার জন্য অনেক বেশী বড় এই ধারণাকে চ্যালেঞ্জ করেন। এ সমস্যা সমাধানের উদ্দেশ্যে তিনি মিরিয়াডের ভিত্তিতে গণনা করার একটি পদ্ধতি বের করেন। মিরিয়াড শব্দটি গ্রিক μυριάς murias থেকে উদ্ভূত, যার অর্থ ১০,০০০। তিনি ১০০ মিলিয়নকে (মিরিয়াডের মিরিয়াড) ভিত্তি করে একটি নাম্বার সিস্টেম প্রস্তাব করেন এবং সিদ্ধান্তে উপনীত হন যে মহাবিশ্বকে সম্পূর্ণভাবে পূর্ণ করতে ৮ ভিজিনটিলিয়ন ( ৮ x ১০৬৩) ধূলিকণা প্রয়োজন।

 

লেখালেখি

আর্কিমিডিস তার কাজের লিখিত রূপের জন্য ডরিক গ্রিক ভাষা ব্যবহার করতেন, যা প্রাচীন সিরাকিউজের আঞ্চলিক ভাষা হিসেবে প্রচলিত ছিল। আর্কিমিডিসের অধিকাংশ কাজ ইউক্লিডের কাজের মত সংরক্ষিত হয়নি; তাঁর সাতটি থীসিসের কথা জানা যায় কেবলমাত্র অন্যদের কাজের রেফারেন্স থেকে। পাপ্পাস অভ আলেকজান্দ্রিয়া আর্কিমিডিসের “অন স্ফীয়ার মেকিং” এবং বহুতল বিশিষ্ট বস্তুর উপর আরএকটি কাজের কথা উল্লেখ করেছেন। অপরদিকে থেরন অভ আলেকজান্দ্রিয়া প্রতিসরণ সম্পর্কে আর্কিমিডিসের হারিয়ে যাওয়া একটি লেখনী “Catoptrica” এর উল্লেখ করেন। জীবদ্দশায় আর্কিমিডিস তাঁর কাজের প্রচারের জন্য আলেকজান্দ্রিয়ার গণিতবিদদের উপর নির্ভর করতেন। বাইজান্টাইন স্থপতি ইসিডোর অভ মিলেতাস আর্কিমিডিসের লেখনীগুলোকে একত্রিত করেন; পরবর্তীতে ষষ্ঠ শতকে ইউতোশিয়াস অভ আসকালোন তাঁর কাজের উপর লিখিত বিবরণ প্রকাশ করার পর আর্কিমিডিসের কাজ বৃহত্তর জনগোষ্ঠীর কাছে পরিচিত হয়ে ওঠে। আর্কিমিডিসের কাজ থাবিত ইবনে কুররা (৮৩৬-৯০১ খৃষ্টাব্দ) আরবিতে এবং জেরার্ড অভ ক্রেমোনা (১১৪৭-১১৮৭ খৃষ্টাব্দ) ল্যাটিনে অনুবাদ করেন। রেনেসাঁর সময় ১৫৪৪ সালে জোহান হেরওয়াগেন সুইজারল্যান্ডের বাজল শহর থেকে গ্রিক ও ল্যাটিন ভাষায় আর্কিমিডিসের কাজ সহ এডিটিও প্রিন্সেপস (Editio Princeps) বইয়ের প্রথম সংস্করণ প্রকাশ করেন। ১৫৮৬ সালে গ্যালিলিও গ্যালিলি বাতাস ও পানিতে ধাতব বস্তুর ওজন নির্ণয়ের জন্য একটি হাইড্রোস্ট্যাটিক নিক্তি উদ্ভাবন করেন, যা আর্কিমিডিসের কাজ দ্বারা অনুপ্রাণিত বলে বলা হয়ে থাকে।

অক্ষত কাজসমূহ

 

লিভার সম্পর্কে আর্কিমিডিসের কথিত উক্তি, “আমাকে একটা দাঁড়ানোর জায়গা দাও, আমি পৃথিবীকে তুলে সরিয়ে দেব”

  • অন দ্য ইকুইলিব্রিয়াম অভ প্লেইনস (On the Equilibrium of Planes) (দুই খন্ড)
প্রথম খন্ডে পনেরটি উপপাদ্য আর সাতটি অনুসিদ্ধান্ত রয়েছে, অপরদিকে দ্বিতীয় খন্ডে দশটি উপপাদ্য পাওয়া যায়। এই বইতে আর্কিমিডিস লিভারের মূলনীতি ব্যাখ্যা করেন। তিনি বলেন, “লিভারের দুই বাহুতে প্রযুক্ত ওজন বাহু দুইটির দৈর্ঘ্যের ব্যস্তানুপাতিক।”
এই বইয়ে উল্লিখিত মূলনীতির সাহায্যে আর্কিমিডিস বিভিন্ন জ্যামিতিক আকারের বস্তু, যেমন ত্রিভুজ, সামান্তরিক, পরাবৃত্তের ক্ষেত্রফল এবং ভরকেন্দ্র নির্ণয় করেন।
  • অন দ্য মেজারমেন্ট অভ আ সার্কেল (On the Measurement of a Circle)
কোনন অভ সামোস (Conon of Samos) এর ছাত্র ডোসিথিস অভ পেলুসিয়ামের (Dositheus of Pelusium) সাথে যৌথভাবে লিখিত এই নিবন্ধে তিনটি উপপাদ্য রয়েছে। দ্বিতীয় উপপাদ্যে আর্কিমিডিস দেখান যে পাইয়ের মান ২২৩/৭১ এর চেয়ে বড় এবং ২২/৭ এর চেয়ে ছোট। ২২/৭ কে পাইয়ের আসন্ন মান হিসেবে মধ্যযুগে গ্রহণ করা হয় এবং বর্তমানেও অত্যন্ত নিখুঁত হিসাবের প্রয়োজন না থাকলে ২২/৭ কেই পাইয়ের মান হিসেবে ব্যবহার করা হয়ে থাকে।
  • “অন স্পাইরালস (On Spirals)”
আঠাশটি উপপাদ্য নিয়ে গঠিত এই কাজটিও ডোসিথিসকে উদ্দেশ্য করে লেখা। এখানে আনুষ্ঠানিকভাবে আর্কিমিডিয়ান স্পাইরালকে সংজ্ঞায়িত করা হয়েছে। এই সংজ্ঞা অনুযায়ী, পোলার স্থানাঙ্ক ব্যবস্থায় (“r”,θ) স্পাইরালকে নিচের সমীকরণের মাধ্যমে প্রকাশ করা যায়ঃ
, r=a+btheta
যেখানে “a” এবং “b” দুটি বাস্তব সংখ্যা।
  • “অন দ্য স্ফীয়ার এ্যাণ্ড দ্য সিলিন্ডার (On the Sphere and the Cylinder)” (দুই খন্ড)
ডোসিথিসকে উদ্দেশ্য করে লেখা এই উপপাদ্যে আর্কিমিডিস সমান উচ্চতা এবং ব্যাস বিসিষ্ট গোলক এবং সিলিন্ডারের মধ্যবর্তী সম্পর্ক প্রকাশ করেন। এই উপপাদ্য অনুযায়ী, “r” ব্যাসার্ধবিশিষ্ট গোলক এবং সিলিন্ডারের ক্ষেত্রে, গোলকের আয়তন 43πr3 এবং সিলিন্ডারের আয়তন 2πr3। অপরদিকে, গোলকের পৃষ্ঠতলের ক্ষেত্রফল 4πr2 এবং সিলিন্ডারের পৃষ্ঠতলের ক্ষেত্রফল 6πr2। গোলকটির আয়তন এবং পৃষ্ঠতলের ক্ষেত্রফল যথাক্রমে সিলিন্ডারের আয়তন এবং পৃষ্ঠতলের ক্ষেত্রফলের two-thirds অংশ। উল্লেখ্য, আর্কিমিডিস নিজের এই কাজটি নিয়ে সর্বাপেক্ষা বেশি গর্ববোধ করতেন এবং তাঁর মৃত্যুর পর তাঁর অনুরোধে তাঁর সমাধিফলকের উপর একটি গোলক এবং একটি সিলিন্ডার স্থাপন করা হয়।

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে

About অনির্বাচিত টুইটার

Scroll To Top